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Abstract

A two dimensional hydrodynamic analysis based on the linear potential theory is introduced to study the natural sloshing

frequencies of transverse modes in a half-filled non-deformable horizontal cylindrical container of elliptical cross section,

without or with a pair of inflexible horizontal longitudinal side baffles of arbitrary extension positioned at the free liquid

surface. Successive conformal coordinate transformations in conjunction with the method of separation of variables and the

relevant boundary conditions are employed to obtain standard truncated matrix eigen-value problems which are then solved

numerically for the resonance eigen-frequencies. The Gauss–Laguerre quadrature formula is used to approximate the

integral eigen-problem obtained in the unbaffled case. Plots of the sloshing frequencies as functions of the container aspect

ratio and baffle extension are presented and discussed for the three lowest antisymmetric and symmetric transverse

oscillation modes. A convergence study is performed to demonstrate the fast convergence and remarkably small

computational cost of the Fourier series approach used for the baffled container, and the effects of tank geometry and baffle

length on the convergence are also examined. Limiting cases are considered and good agreements with available analytic

and numerical solutions as well as experimental data are obtained, demonstrating the accuracy of proposed models.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Sloshing is a fascinating physical phenomenon characterized by the oscillation of the unrestrained free
surface of the liquid in a partially filled container due to external excitation. The understanding of this
complex dynamic behavior is of immense practical interest that has far reaching implications encompassing a
wide field of technologies and engineering disciplines. Sloshing occurs in moving vehicles with contained liquid
masses, such as liquid bulk cargo carriers (e.g., trucks, railroad cars, oil tankers, ships), rockets, aircrafts, and
spacecrafts as well as in seismically excited storage tanks, dams, reactors, and nuclear vessels. If the sloshing
frequency is sufficiently close to the natural frequency of the structure, resonance can result in instabilities with
catastrophic consequences. For example, liquid cargo–vehicle interaction in partly filled tanks has been
recognized as a potential contributing factor for the occurrence of about 4% of heavy truck road accidents [1].
In this context, maneuvers performed by the vehicle should not represent even near-to-resonance situations.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Similarly, the failure of the spacecraft’s control system has been attributed to the destabilizing effects caused
by sloshing within liquid stores carried abroad space transportation vehicles [2].

Liquid sloshing in a rigid container has been studied for many years [3]. The problem is generally nonlinear,
even if the governing equations of the fluid motion is linearized, in the sense that the free surface boundary
condition is nonlinear as well as the position of the free surface is not known a priori. In spite of that the
complete linearization of the system in which the free surface boundary condition is linearized and satisfied on
the undisturbed free surface can give satisfactory results in many cases. There are numerous successful
applications of the linearized and nonlinear theories in the open literature. Exhaustive surveys on both
formulations can be found in Ref. [3,4]. Just recently, Wei et al. [5] established a finite element method (FEM)
for modal and damping analysis of the liquid small amplitude sloshing in containers of arbitrary shape with
three kinds of contact line boundary conditions (i.e., free-end, pin-end, and wetting boundary conditions). Liu
and Lin [6] developed a numerical two-phase fluid flow model (NEWTANK) to study three-dimensional (3D)
highly nonlinear (violent) and turbulent viscous and inviscid liquid sloshing with broken free surfaces in rigid
rectangular tanks under arbitrarily six degree-of freedom external excitations. Mitra et al. [7] developed
a pressure-based Galerkin finite element code to investigate two-dimensional (2D) slosh characteristics
(i.e., natural frequencies, free surface profiles and the hydrodynamic pressure) in partially filled ground-
supported containers of various practical shapes (e.g., rectangular, vertically mounted annular cylindrical,
trapezoidal and horizontal circular cylindrical containers). Virella et al. [8] used conventional finite element
tools (ABAQUS) to investigate the influence of nonlinear wave theory on the 2D sloshing frequencies and
their modal pressure distributions for rectangular tanks. The authors examined the effect of the tank geometry
and the liquid level, and concluded that the nonlinearity of the surface wave does not have major effects in the
pressure distribution on the walls of rectangular tanks. Maleki and Ziyaeifar [9] developed a theoretical
damping model based on Laplace’s differential equation to investigate the potential of horizontal ring and
vertical blade baffles in increasing the hydrodynamic damping of sloshing in circular-cylindrical storage tanks.
The authors also carried out a series of experiments employing a tank model on a shake-table to validate their
theoretical model. Drosos et al. [10] developed a simple yet accurate numerical methodology based on
standard FEM analyses (ANSYS) for effective computation of the eigen-mode frequencies and shapes of the
sloshing modes in liquid storage tanks of arbitrary shape and fill height. Attari and Rofooei [11] investigated
the lateral nonlinear response of a single degree of freedom (SDOF) structural system containing a rigid
circular cylindrical liquid tank. The authors numerically solved for the response under horizontal harmonic
and earthquake excitations using the first and third sloshing modes in the neighborhood of 1:2 and 1:1 internal
resonances. They found that due to nonlinear interaction between the liquid and the structure, energy transfer
from the structure to liquid would take place causing an increase in liquid’s response while reducing the
response of the structural system.

Horizontal cylindrical tanks with circular cross sections are widely used in road transportation and civil
engineering for carrying and storing liquids. Partial fill conditions are quite common during the service time of
these tanks. Generally, the analysis of sloshing in horizontal cylindrical vessels filled up to an arbitrary height
requires a numerical solution. However, for the particular case of a half-full horizontal cylinder it is possible to
develop an analytical solution. Budiansky [12] developed an integral-equation (Green’s function) approach to
estimate the natural frequencies, (antisymmetric) mode shapes, and forces exerted on the rigid walls of a
partially filled 2D circular canal for arbitrary depth of liquid due to lateral excitation by using proper space
transformations and quadrature approximations. Using experimental techniques, McCarty and Stephens [13],
and Kana [14] measured natural frequencies for transverse sloshing in horizontal cylindrical vessels of
different sizes, fullness, and orientations, verifying the results of Budiansky [12]. Moiseev and Petrov [15]
described the application of Ritz variational method for the numerical calculation of sloshing frequencies in
vessels of various geometries, including the case of a horizontal cylindrical container. Fox and Kuttler [16]
used conformal mapping and the powerful method of intermediate problems to obtain upper and lower
bounds for the values of 2D sloshing frequencies in a semi-circular tank. The authors also considered regions
with baffles, partial lids, double-surfaced sloshers, and a class of more general universal upper-bounding
regions. McIver [17] exploited bipolar coordinates to study the 2D sloshing frequencies of fluid in a horizontal
circular cylindrical container filled up to an arbitrary height, reformulating the eigen-value-sloshing problem
in terms of integral equations, which were then solved numerically. Kobayashi et al. [18], reported
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experimental measurements for sloshing frequencies and hydrodynamic forces in horizontal cylinders in both
longitudinal and transverse directions under small and large slosh wave heights, and made comparison with
analytical values from equivalent rectangular containers. McIver and McIver [19] presented simple analytical
methods to obtain upper and lower bounds of sloshing frequencies in horizontal cylinders, which were found
to be in good agreement with the results from a boundary element numerical solution. Evans and Linton [20]
used nonorthogonal bounded harmonic spatial function expansions to present an accurate series-type semi-
analytical solution to the eigenvalue-sloshing problem of half–full horizontal cylindrical containers.
Papaspyrou et al. [21,22] used the semi-analytical series-type solution of Evans and Linton [20], to investigate
the 2D and 3D sloshing response of half-full rigid horizontal cylindrical vessels under external excitation in the
transverse and longitudinal directions. Patkas and Karamanos [23] reported on externally induced sloshing
calculations in horizontal cylinders under transverse excitation, using a variational formulation.

Tanks with elliptical cross sections are also extensively used in the road transportation industry. In
comparison with the circular case, there are relatively few reports on sloshing studies for this specific
configuration in the current literature. Many of these studies are associated with performance of elliptical tank
vehicles, and aim to assess directly the stability of the system by identifying the overturning limit or rollover
threshold acceleration for different tank shapes and fill levels. For example, Strandberg [24] compared the
performance (stability) of circular, elliptical, and super-elliptical tank shapes of equal capacity. He noticed
that, for some values of fill level, a circular cross-section tank may be more stable than an elliptical tank of
equal capacity. Strandberg concluded that the natural sloshing frequency and the vehicle stability increases in
the following order: super-elliptical, elliptical and circular, despite that the centre-of-gravity is also increased
in that order. Rakheja et al. [25] investigated the influence of tank size and cross section on the rollover
threshold of partially filled articulated tank vehicles during the turning process. The authors carried out
computer simulation for steady turning characteristics of a four compartment tank of circular, elliptical,
modified oval, and modified square cross sections. Popov et al. [26] presented a numerical analysis of liquid
load in elliptical road containers undergoing a uniform lateral acceleration for containers of unrestricted size.
They performed an optimization study with an objective to minimize the peak overturning moment on
containers of fixed capacity to identify the optimal height–width ratio of the container. Salem [27] simulated
the lateral fluid sloshing effects (rollover stability) in partially filled heavy duty elliptical and cylindrical
tankers using an equivalent mechanical (trammel) pendulum. He obtained the appropriate pendulum
parameters by matching the pendulum dynamic effects with fluid sloshing dynamic effects by using finite
element (FE) fluid models. More recently, Xu [28] developed a new mathematical method for investigating 2D
and 3D transient liquid motion in partially filled horizontal circular cylindrical and elliptical cargo tanks. The
author used continuous coordinate mappings to rearrange the governing equations in such a way that the
difficulties of direct discretization for numerical calculation by finite difference method are avoided. Also,
Romero et al. [1] described experimental determination of sloshing frequencies based on scale model tests for
three tanks with different shapes but equal volume capacities, i.e., two conventional (circular and elliptical)
and one generic geometric design. They concluded that, since high natural frequencies are desirable, the
elliptical tank is the poorest choice at all fill levels, while the generic tank has the most rapidly increasing
natural frequency over the largest range, and has the best performance of all the tanks at high fill levels.

The above review clearly indicates that while there exists a relatively large body of literature on liquid
sloshing in horizontal circular cylindrical containers with different fill levels, rigorous analytic or semi-analytic
solutions for lateral liquid motion in a half-full horizontal elliptical fluid container (with or without horizontal
side baffles) seems to be nonexistent. Our primary objective is to fill this gap. The proposed model is of noble
interest essentially due to its inherent value as a canonical problem in liquid sloshing dynamics. It can be of
practical value in stability analysis of circular or elliptic cylindrical cargo tanks in near-half-full condition,
which are known to be unfavorably connected with the lowest rollover-threshold accelerations [24]. It can
serve as an alternative to the numerical (experimental) methods, which may encounter a number of drawbacks
such as time-consuming modeling process and numerical computations (excessive measurement noise, non-
repeatability of test results, and expensive large-scale laboratory facilities). It may readily be implemented into
a computer-aided-design and development chain to guarantee an efficient and optimum design process. Lastly,
the presented analytic (semi-analytic) solution can provide a valuable benchmark for comparison to other
solutions obtained by strictly numerical or asymptotic approaches.
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2. Formulation

2.1. Baffled container

The baffled container geometry is shown in Fig. 1a. An incompressible and non-viscous liquid fills a rigid
horizontal elliptic tank, with the major and minor semi-axes ‘‘a’’ and ‘‘b,’’ to its half capacity, and two internal
horizontal longitudinal side baffles of length ‘‘L’’ partly cover free surface of the fluid as shown in the figure.
Such baffles or separators may be used in tank vehicles to impede the lateral slosh and improve rollover
stability and performance. The 2D Cartesian coordinates (x, y) are chosen in a plane perpendicular to the
cylinder generators. The x axis is in the plane of free surface, which occupies ðL� aÞoxoða� LÞ, and y axis
points vertically downwards through the midpoint of the free surface. Mathematically, the problem may be
stated as follows. The velocity potential for the small time-harmonic irrotational motion (the harmonic time
factor is omitted in the following) of the inviscid, incompressible fluid must satisfy Laplace’s equation in the
fluid domain [3]

r2Fðx; yÞ ¼ 0, (1)

with the linearized free-surface boundary condition

lFþ
qF
qy
¼ 0, (2)

where l ¼ o2=g, o is circular frequency of the oscillations, and g is the acceleration due to gravity. In addition,
the zero normal derivative at the rigid wall of the container implies that

qF
qn
¼ 0, (3)

where n is the normal to the container boundary (see Fig. 1). The above system describes an eigenvalue
problem with the eigenvalue l appearing in the boundary condition (2) rather than the differential equation.
Fig. 1. Problem geometry: (a) baffled elliptical tank and (b) unbaffled elliptical tank.
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Since there does not exist a proper choice of the coordinate system for which all coordinate surfaces are wall
or free liquid surface, we can use the concept of conformal transformation to relate the original semi-elliptical
region to one of the standard regions for which explicit solutions are known such as the rectangle, or the
infinite strip. In particular, we manage the exact satisfaction of the boundary conditions at the container wall,
side baffles, and the free liquid surface by utilizing appropriate coordinate surfaces. In each case we obtain a
Fourier-series expansion for the velocity potential in terms of the transformation variables. The successive
transformations shown in the first column of Fig. 2 map the inner region of the half-ellipse with two side
baffles, shown Fig. 2a, into a rectangular region in Fig. 2e. Such mapping can be constructed in four steps, as
explained below. First, we let Rz denote the half ellipse region of Fig. 2a with distinguished boundary points A,

A0, B, F, F0, P, P0 and O. By using the transformation u ¼ sin�1ðz=cÞ; z ¼ xþ iy, where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
is the

focal distance of the ellipse, the rectangle Ru of width p and height log r, where r is defined by r ¼ ðaþ bÞ=c, is
obtained (Fig. 2b). Subsequently, following standard notation, Ru is mapped to a half-disk Rv of radius m1

�1/4

(Fig. 2c) by the use of Jacobi elliptic sine function n ¼ sn½ð2K1u=pÞjm1�, in which K1 ¼ Kðm1Þ ¼R p=2
0 ðdy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m1 sin

2 y
p

Þ is the classical elliptic integral of first kind [22,23]. Here, the Jacobi elliptic sine

function may be defined as sn½Zjm� ¼ sin j ¼ sin½F�1ðZ;mÞ�, where Z ¼ F ðj;mÞ ¼
R j
0 ðdy=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2 y

p
Þ, and

j is known as the Jacobi amplitude [29,30]. Also, given r, the parameter 0pm1p1 can be calculated by the
rapidly convergent series expression [30]

m
1=4
1 ¼

2
P1

j¼1r
�4ðj�1=2Þ2

1þ 2
P1

j¼1r�4j2
. (4)
Fig. 2. The successive conformal transformations used for the baffled and unbaffled half-elliptical regions.
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Here, we note that corner points F and F0 in Ru (Fig. 2b) are mapped into the boundary points (1,0) and (�1,0)

in Rv (Fig. 2c), respectively. Next, by the simple scaling, w ¼ vfsn½ð2K1=pÞ sin
�1
ðða� LÞ=cÞjm1�g

�1, the
boundary points P and P0 are, respectively, mapped into the points (1,0) and (�1,0), and the radius of the new

half disk Rw is given by m
�1=4
2 ¼ m

�1=4
1 fsn½ð2K1=pÞ sin

�1
ððL� aÞ=cÞjm1�g

�1 (Fig 2d). At this point, we recall the

special mapping of corner points F and F0 in Ru (Fig. 2b) into the boundary points (71,0) in Rv (Fig. 2c). This
suggests that the boundary points Pð1; 0Þ and P0ð�1; 0Þ in Rw (Fig. 2d) may advantageously be mapped into
the corner points of a rectangle ð�p=2; 0Þ through an inverse Jacobi elliptic sine transformation. Consequently,

Fig. 2e shows that Rw is mapped into a rectangular region Rz by the function z ¼ ðp=2K2Þsn
�1½wjm2�, where

m2 ¼ m1sn
4½ð2K1=pÞsin

�1
ðða� LÞ=cÞjm1�, and K2 ¼ Kðm2Þ is the classical elliptic integral of the first kind with

parameter m2. Lastly, combining the above steps, one obtains the overall baffled half-ellipse to rectangle map
(i.e., Rz in Fig. 2a to Rz in Fig. 2e):

z ¼ wþ ic ¼
p

2K2
sn�1

sn½ð2K1=pÞsin
�1
ðz=cÞjm1�

sn½ð2K1=pÞsin
�1
ðða� LÞ=cÞjm1�

�����m2

" #
. (5)

It is clear from Fig. 2e that the side baffles are appropriately mapped into the two vertical sides of the rectangle
Rz, and the y axis coincides with c (w ¼ 0) axis. Also, the elliptical container boundary (liquid free surface)
coincides with the coordinate line c ¼ c0ðc ¼ 0Þ.

Now, making use of the change of variables (5), Laplace’s equation (1) for the potential Fðw;cÞ within Rz

may be written as

q2F
qw2
þ

q2F

qc2
¼ 0 ð�p=2owop=2; 0ococ0Þ, (6)

where the zero flow condition (3) at the rectangular wall is written as

qF
qc

����
c¼c0

¼ 0;
qF
qw

����
w¼�p=2

¼ 0, (7)

and the free surface condition (2) is reformulated as

lgðwÞFþ
qF
qc

� �
c¼0
¼ 0, (8)

where

gðwÞ ¼ c
K2

K1
cos

p
2K1

sn�1½sSðwÞjm1�

� �
sCðwÞDðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1� s2S2ðwÞ�½1�m1s2S2ðwÞ�
p , (9)

in which

s ¼ sn½ð2K1=pÞsin
�1
½ða� LÞ=c�jm1�,

SðwÞ ¼ sn½ð2K2=pÞwjm2�,

CðwÞ ¼ cn½ð2K2=pÞwjm2�,

DðwÞ ¼ dn½ð2K2=pÞwjm2�, (10)

where cn½Zjm� ¼ cos j and dn½Zjm� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m sin2 j

q
are the Jacobi cosine and Jacobi delta amplitude elliptic

functions [29,30].
The possible modes of oscillation are either symmetric or antisymmetric about c-axis, which is equivalent to

the oscillations being symmetric or antisymmetric about the y-axis (Fig. 2a). For antisymmetric oscillations,
the general solution of Eq. (6) satisfying the boundary condition (7) may be obtained by the standard method
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of separation of variables as

FAðw;cÞ ¼
X1
m¼1

Am

coshðð2m� 1Þðc� c0ÞÞ

coshðð2m� 1Þc0Þ
sinðð2m� 1ÞwÞ. (11)

Substituting the above solution into the free-surface condition (8), making use of the orthogonality property
of transcendental functions, and truncating the resulting eigen-system, gives

l
XN

m¼1

AmIA
nm � ð2n� 1ÞAn tanhðð2n� 1Þc0Þ ¼ 0, (12)

where N is the truncation size, n ¼ 1; 2; 3; . . . ;N, and IA
nm ¼ ð2=pÞ

R p=2
�p=2 gðwÞ sinðð2n� 1ÞwÞ sinðð2m� 1ÞÞdw.

Similarly, for symmetric oscillations, the appropriate form of the solution of (6) satisfying (7) is written as

FSðw;cÞ ¼ B0 þ
X1
m¼1

Bm

coshð2mðc� c0ÞÞ

coshð2mc0Þ
cosð2mwÞ. (13)

Incorporating the above solution into the free-surface condition (8), and making use of the orthogonality
property of transcendental functions, yields the truncated linear system

l B0 þ
XN

m¼1

BmIS
nm

 !
� 2nBn tanhð2nc0Þ ¼ 0, (14)

where n ¼ 1; 2; 3; . . . ;N, and IS
nm ¼ ð2=pÞ

R p=2
�p=2 gðwÞ cosð2nwÞ cosð2mwÞdw. Here, we see that the sloshing

problem in the baffled elliptic container has been reduced to determining the eigen-values l for which Eqs. (12)
and (14) have non-trivial solutions. The symmetry of the integrals IA;S

nm ensures that the associated truncated
matrix eigensystem will be symmetric, and thus all eigenvalues are real.

2.2. Unbaffled container

The unbaffled tank geometry is shown in Fig. 1b. Here, the x axis is in the plane of free surface, which
occupies �aoxoa, and y axis points vertically downwards through the midpoint of the free surface. The
successive transformations shown in the second column of Fig. 2 map the inner region of the half-ellipse,
shown Fig. 2f, into a strip-like region in Fig. 2i. Such mapping can be constructed in three steps, as explained
next. The first two steps are exactly the same as in the case of the baffled container, while the third step
involves the function x ¼ 2 tanh�1ðm

1=4
1 vÞ which maps the half-disk Rv to a strip like region Rx (see Figs. 2f–i)

[17]. Consequently, the overall half-ellipse to infinite strip mapping can be written as

x ¼ aþ ib ¼ 2 tanh�1ðm
1=4
1 sn½ð2K1=pÞ sin

�1
ðz=cÞjm1�Þ. (15)

A simple comparison of Fig. 2f and i indicates that the intersections of the elliptic container wall with liquid free
surface (i.e., points A and A0) are now located at 7N, and the y-axis coincides with the b-axis. The elliptical
container wall coincides with the coordinate line b ¼ b0 and the liquid free surface coincides with the a-axis.

Next, utilizing the transformation (15), Laplace’s equation (1) for the potential Fða; bÞ within Rx may be
written as

q2F
qa2
þ

q2F

qb2
¼ 0 ð�1oao1; 0obob0Þ, (16)

where the zero flow condition (3) at the upper boundary of the strip is written as

qF
qb

����
b¼b0

¼ 0, (17)

and the free surface condition (2) is reformulated as

lgðaÞFþ
qF
qb

� �
b¼0
¼ 0, (18)
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where

gðaÞ ¼
cp

4m
1=4
1 K1

cosððp=2K1Þsn
�1½m

�1=4
1 tanhða=2Þjm1�Þ½1� tanh2ða=2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1�m
�1=2
1 tanh2ða=2Þ�½1�m

1=2
1 tanh2ða=2Þ�

q . (19)

For antisymmetric and symmetric oscillations, the general solution of (16) satisfying the boundary condition
(17) may, respectively, be stated in terms of the appropriate Fourier integrals as

FAða; bÞ ¼
Z 1
0

AðtÞ
cosh½tðb� b0Þ�

coshðt̄b0Þ
sinðtaÞdt

FSða; bÞ ¼
Z 1
0

BðtÞ
cosh½tðb� b0Þ�

coshðtb0Þ
cosðtaÞdt. (20)

Substituting the above solution into the free-surface condition (18) and making further use of the Fourier sine
and cosine transformations, yields the corresponding integral eigen-value problems

l
Z 1
0

AðtÞIAðt; tÞdt� t tanhðtb0ÞAðtÞ ¼ 0

l
Z 1
0

BðtÞISðt; tÞdt� t tanhðtb0ÞBðtÞ ¼ 0, (21)

where

IAðt; tÞ ¼
2

p

Z 1
0

gðaÞ sinðtaÞ sinðtaÞda

ISðt; tÞ ¼
2

p

Z 1
0

gðaÞ cosðtaÞ cosðtaÞda. (22)

The above integral eigen-value problems can readily be converted into symmetric matrix eigen-value problems
with real eigen-values using the N-point Gauss–Laguerre quadrature formula in the form [29]Z 1

0

gðt; tÞdt �
XN

i¼1

wi expðtiÞgðt; tiÞ, (23)

where ti are the abscissas, wi (i ¼ 1; 2; . . . ;N) are the weighting coefficients, and gðt; tÞ can be either
AðtÞIAðt; tÞ or BðtÞISðt; tÞ. Using the above formula to treat the integral equations (21) in this way, after some
manipulations, leads to the standard matrix eigen-problems

lMAA ¼ KA

lMSB ¼ KB, (24)

where the elements of the vector A ¼ ½Aj ¼ AðtjÞ�, B ¼ ½Bj ¼ BðtjÞ� ðj ¼ 1; 2; . . . ;NÞ, are unknown Fourier

coefficients, K ¼ ½Kij � ¼ Diag½ti tanh tib0�ði; j ¼ 1; 2; . . . ;NÞ, and the elements of the square matrices MA ¼

½MA
ij � and MS ¼ ½M

S
ij � are given as

MA;S
ij ¼ wi expðtiÞIA;Sðtj ; tiÞ, (25)

where the kernel integrals IAðti; tj ;mÞ and ISðti; tj ;mÞ may readily be evaluated using standard numerical
integration routines. This completes the necessary background required for the analysis of the problem. Next
we consider detailed numerical examples.

3. Numerical results

In this section, noting the relatively straightforward computations involved here, a detailed parametric
study is carried out to investigate the effects of the key geometric parameters, namely the container aspect



ARTICLE IN PRESS
S.M. Hasheminejad, M. Aghabeigi / Journal of Sound and Vibration 324 (2009) 332–349340
ratio a/b and the baffle extension ratio L/a, on the natural sloshing frequencies. From the collection of data
presented here, certain trends are noted and general conclusions are made about the relative importance of the
parameters. A Mathematica code was developed for computation of the eigen-values from the eigen-systems
(12), (14) and (24) based on the standard bisection root finding technique. The numerical integrations in IA;S

nm

and IA;S are performed by making extensive use of the Mathematica build-in function ‘‘NIntegrate [31].’’ The
convergence of numerical calculations were ensured by increasing the truncation size (for the baffled
container) or discretization order (for the unbaffled vessel), while looking for steadiness in the numerical value
of the computed natural frequencies.

3.1. Convergence and computation time

The first column in Fig. 3 shows the change in the first three normalized antisymmetric and symmetric
sloshing frequencies ðO ¼ o2

ffiffiffiffiffi
ab
p

=gÞ with the truncation size, N, for four selected container geometries for the
Fig. 3. The change in the first three normalized antisymmetric and symmetric sloshing frequencies ðO ¼ o2
ffiffiffiffiffi
ab
p

=gÞ with the truncation size

(discretization order) for four selected container geometries for the baffled (unbaffled) vessel.
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Table 1

Comparison of the total CPU times for calculating the sloshing frequencies for nearly-circular and highly-elliptical tanks of extremely

short baffles with their unbaffled counterparts.

Baffled tank (L/a ¼ 0.0001) Unbaffled tank

A S CPU time (s) A S CPU time (s)

b/a ¼ 0.1 0.070710 0.246522 338 0.070702 0.252583 124,308

0.517798 0.872455 0.517931 0.876441

1.29632 1.77456 1.30366 1.78435

b/a ¼ 0.9 1.24030 2.8475 2,685 1.24004 2.87223 30,854

4.39672 5.90922 4.39579 5.93192

7.41178 8.90958 7.40917 8.94521
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baffled vessel ðL=a; b=a ¼ 0:05; 0:95Þ. It is clear that the fastest convergence is obtained for the container with the
highest aspect ratio and shortest baffle (i.e., for b=a ¼ L=a ¼ 0:05). This may be explained by the fact that the
modal oscillations in the fluid-layer-like container can more suitably be described by the adopted transcendental
series type solutions (11) and (13). Consequently, as the container shape departs from a nearly-rectangular shaped
region (e.g., for the circular container), the liquid sloshing modes are expected to get more coupled and deviate
from the sinusoidal form. Thus, more terms in the series solution are rationally needed for obtaining accurate
solutions. In addition, the frequency convergence plots for the elliptic and the nearly-circular containers with long
baffle extensions (i.e., for b=a ¼ 0:05; 0:95;L=a ¼ 0:95) display a similar trend. This implies that for a narrow free
surface length, the natural frequencies are expected to be nearly insensitive with respect to the overall container
geometry. Lastly, one can note that, even in the worst situation (e.g., for the third symmetric mode in a nearly-
circular tank with very short baffles), no more than 10 terms are needed in the series to obtain an acceptable
accuracy ðNo10Þ. The second column in Fig. 3 shows the change in the first three normalized antisymmetric and
symmetric sloshing frequenciesðO ¼ o2

ffiffiffiffiffi
ab
p

=gÞ, obtained by the N-point Gauss–Laguerre quadrature formula,
with the discretization order for four selected geometric ratios of the unbaffled vessel ðb=a ¼ 0:1; 0:2; 0:8; 0:9Þ.
A distinctively different trend, in comparison with the baffled container is observed. In particular, in contrast with
the Fourier series solution obtained for the baffled container, the fastest (slowest) convergence is obviously
observed for the container with the lowest (highest) aspect ratio, i.e., for b=a ¼ 0:9 ðb=a ¼ 0:1Þ.

Table 1, compares the total CPU times spent on a low-end personal computer for calculating the first three
antisymmetric and symmetric sloshing frequencies for nearly-circular and highly elliptical tanks of extremely short
baffles ðb=a ¼ 0:1; 0:9; L=a ¼ 0:0001Þ with those of unbaffled tanks of identical geometric ratios ðb=a ¼ 0:1; 0:9Þ.
While an acceptable agreement in the natural frequencies is observed, the computation times for the baffled
containers are obviously lower than those of the unbaffled vessels. This is mainly because of the (earlier-noted) fast
convergence of Fourier series solution (in addition to the lower computation time required for evaluating the
proper integrals IA;S

nm ) for the baffled container, in comparison with the lower rate of convergence obtained by
using the N-point Gauss–Laguerre quadrature approximation formula (along with the higher computation time
needed for evaluating the improper integrals IA;S; see Eqs. (22)) in the unbaffled case. In particular, we note for the
baffled (unbaffled) vessel that, the computation time for a highly elliptic cross section is markedly lower (higher)
than that of a nearly-circular section. Moreover, the total CPU time for the highly elliptic vessel with very short
side baffles ðb=a ¼ 0:1; L=a ¼ 0:0001Þ is stunningly lower than that of the unbaffled elliptic vessel ðb=a ¼ 0:1Þ.
Therefore, it is reasonable to conclude that the total computation time for calculation of the natural sloshing
frequencies of highly elliptic half-full unbaffled containers with acceptable accuracy may appreciably be reduced by
employing the Fourier series approach, while assuming the presence of a pair of very small side-baffles.

3.2. Numerical examples

Fig. 4 displays the 2D contour plots of first three antisymmetric and symmetric dimensionless sloshing
frequencies ðO ¼ o2b=gÞ as a function of the geometric ratio, b/a, and baffle extension ratio, L/a, for vessels of
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Fig. 4. The 2D contour plots of first three antisymmetric and symmetric dimensionless sloshing frequencies ðO ¼ o2b=gÞ as functions of

the container geometric and baffle extension ratios for vessels of constant depth.
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constant depth (i.e., b ¼ 1). The most important observations are as follows. The natural frequencies increase
with increasing b/a and also with L/a. In particular, for a fixed baffle length ratio, the sloshing frequencies
increase from zero to a finite value as the as b/a increases from zero to unity (i.e., by moving from a film-like
geometry towards a circular one). This increase in the natural frequencies may naturally be linked to the
decrease in the free surface width (relative to the container depth) as b/a increases. Also, for a fixed tank
geometric ratio, the sloshing frequencies increase from a finite value to infinity as the as L/a increases from
zero to unity. This remarkable increase in the natural frequencies may directly be linked to the vanishing of the
free surface width as L/a approaches unity. Here, we note that in order to get a better presentation of the
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results, the extremely high values of natural frequency obtained in the vicinity of the L/a ¼ 1 line have not been
displayed in the subplots. Furthermore, it is clear that the constant frequency contour lines for the constant
depth vessel appear to be nearly straight lines which originate from the point ðb=a;L=aÞ ¼ ð0; 1Þ. This implies
that, regardless of container’s width or aspect ratio, all vessels of constant depth ðbÞ and equal free surface
length (a�L) are expected to share nearly equal sloshing frequencies. Additionally, the slope, �ða� LÞ=b, of
the constant frequency lines decrease as either L/a or b/a increases. In particular, when the slope of the constant
frequency line is high, the sensitivity of natural frequencies with respect to the geometric ratio, b/a, is high in
comparison with that of the baffle extension ratio, L/a. On the other hand, when the slope of the constant
frequency line is low, the natural frequencies do not display a great sensitivity with respect to the change in the
geometric ratio, b/a, in comparison with that of the baffle extension ratio, L/a. In other words, when there is a
wide liquid free surface length relative to the container depth, the natural frequencies will be very sensitive with
respect to the geometric container aspect ratio. Conversely, for a narrow free surface length, the natural
frequencies are nearly insensitive with respect to the container geometry. This may be because, changing the b/a
ratio in the latter case does not change the active oscillating liquid mass in the vicinity of the free surface.
Lastly, one can note that the compactness of the constant frequency lines (or rate of increase in the frequency
magnitudes) increases, as the free surface length decreases (i.e., either L/a or b/a increases).

Fig. 5 shows the 2D contour plots of first three normalized antisymmetric and symmetric sloshing
frequencies ðO ¼ o2a=gÞ as a function of the tank aspect ratio and baffle extension ratio for vessels of constant
width (i.e., a ¼ 1). Comments very similar to above remarks can readily be made. The most important
distinction is that the sensitivity of natural frequencies with respect to the change in the geometric ratio, b/a, is
rapidly lost, especially for higher mode numbers and/or high baffle extension ratios, L/a. In particular, there
exists a critical container aspect ratio (or equivalently a critical container depth), for which the natural
frequencies start to loose their sensitivities. This implies that, for each given liquid free surface length (or L/a),
there is a specific (critical) container depth before which increasing container depth (i.e., adding active
oscillating liquid mass) affects the natural liquid sloshing frequencies. On the other hand, as the container depth
is increased beyond the critical value (i.e., adding inactive liquid mass), the constant frequency contour
lines become nearly horizontal, and the sloshing frequencies do not exhibit any notable change with the
geometric ratio, b/a. Further examination of the figure indicates that, the numerical value of the critical
container geometric ratio decreases with increasing the mode number. This can be explained by the fact that
liquid oscillations in higher modes is actively confined in the vicinity of free surface. In addition, the critical
geometric ratio for containers with long baffles (i.e., a narrow liquid free surface) appear to be smaller than
those with short baffles (i.e., a wide liquid free surface). This may be because, in contrast with the wide free
surface case, a narrow free surface length is not capable of actively setting a great amount of liquid mass in
oscillations.

Fig. 6 displays the 2D contour plots of first three normalized antisymmetric and symmetric sloshing
frequencies ðO ¼ o2

ffiffiffiffiffi
ab
p

=gÞ as a function of the tank aspect ratio and baffle extension ratio for vessels of
constant capacity (i.e.,

ffiffiffiffiffi
ab
p
¼ 1), which may be of most practical value for design and optimization purposes

[26]. Comments very similar to those made in the previous two figures can be made. The most important
differences are that here the constant frequency contour lines are not linear (as in Fig. 4), and there is
no distinct critical container depth for frequency insensitivity with respect to the container aspect ratio (as in
Fig. 5). In other words, the sloshing frequency contours for the constant capacity container behave somewhat
in between those for the constant depth and the constant width vessels.

A more detailed presentation of the numerical results may be obtained by slicing the contour plots in
Figs. 4–6 along the constant baffle extension ratio lines. Accordingly, the three columns displayed in Fig. 7
show the variation in the first three normalized antisymmetric and symmetric sloshing frequencies with the
cross sectional aspect ratio for constant depth, width, and capacity tanks of selected baffle extension ratio
ðL=a ¼ 0:01; 0:1; . . . ; 0:90; 0:95Þ. Here, nearly all above-mentioned observations are more clearly illustrated
(i.e., the linear frequency dependence for constant depth vessel, and the distinct critical depth for the constant
width vessel). The most interesting observation is perhaps that the initial slope of the frequency—b/a curves
(i.e., the slope at b/aE0) increases from near zero to infinity, as the baffle extension ratio (L/a) increases. This
effect, which is most clearly observable for the constant capacity vessel (i.e., in the last column of Fig. 7), may
be explained as described earlier in discussions of Figs. 4–6.
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Fig. 5. The 2D contour plots of first three antisymmetric and symmetric dimensionless sloshing frequencies ðO ¼ o2a=gÞ as functions of

the container geometric and baffle extension ratios for vessels of constant width.
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3.3. Computer code validation

Finally, in order to show overall validity of the solutions, we used our general Mathematica codes to
compute the first three normalized antisymmetric and symmetric sloshing frequencies ðO ¼ o2

ffiffiffiffiffi
ab
p

=gÞ for a
wide range of aspect ratios and baffle lengths of a constant capacity vessel (i.e.,

ffiffiffiffiffi
ab
p
¼ 1), with the aim of

matching the theoretical [16,20], numerical [28], and experimental [1] results available in the open literature.
The outcome is displayed in Table 2. The calculated natural frequencies, which are predominantly validated to
at least three decimal digits, along with the related references are tabulated. It should be reminded that the
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Fig. 6. The 2D contour plots of first three antisymmetric and symmetric dimensionless sloshing frequencies ðO ¼ o2
ffiffiffiffiffi
ab
p

=gÞ as functions

of the container geometric and baffle extension ratios for vessels of constant capacity.
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numerical values of the natural frequencies listed in Table 2 are normalized with respect to characteristic
length

ffiffiffiffiffi
ab
p

. Therefore, proper scaling in each case must separately be performed in order to obtain the specific
values presented in the above-mentioned references.

4. Conclusions

A simple and computationally efficient semi-analytic approach based on the linearized theory of water
waves in conjunction with the powerful conformal mapping technique is employed to investigate free lateral
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(2D) sloshing inside a half-full horizontal elliptical vessel without or with a pair of longitudinal side baffles of
arbitrary extension. In particular, a detailed parametric study for examining the influence of the container’s
cross sectional ellipticity and the side-baffle lengths on the calculated liquid natural frequencies is performed.
The most important observations are summarized as follows.

The fastest convergence (smallest CPU time) is obtained via Fourier series in the calculation of natural
frequencies for the container with the highest aspect ratio and shortest side baffles. Also, the convergence rate
for the baffled vessel with a very narrow free liquid surface (or long baffles) is found to be nearly insensitive
with respect to the overall tank geometry. On the other hand, the slowest convergence (highest CPU time) in
the calculation of natural frequencies is observed when using Gauss–Laguerre quadrature technique for the
Fig. 7. The variation in the first three normalized antisymmetric and symmetric sloshing frequencies with the cross sectional aspect ratio

for constant depth, constant width, and constant capacity tanks of selected baffle extension ratios.
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Fig. 7. (Continued)
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highly elliptical unbaffled vessel. In particular, it is demonstrated that the Fourier series approach for a highly
elliptical (nearly circular) container with a pair of very short side-baffles may advantageously be used to
enormously (considerably) reduce the total computation time for calculation of the natural sloshing
frequencies of the unbaffled container with an acceptable accuracy.

It is found that the natural sloshing frequencies generally increase with decreasing tank aspect ratio and/or
increasing the side baffle lengths. In particular, the effect of increasing the baffle lengths on boosting the
natural sloshing frequencies is more prominent for the nearly circular container in comparison with that of the
highly elliptical container. Furthermore, all elliptical vessels of constant depth and equal free liquid surface
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Table 2

The first three normalized antisymmetric and symmetric sloshing frequencies for a wide range of (constant capacity) tank aspect ratios and

baffle lengths.

b/a n L/a ¼ 0.0001 L/a ¼ 0.1 L/a ¼ 0.5 L/a ¼ 0.9

A S A S A S A S

0.4359 1 0.5671 1.6261 0.7030 [16] 1.9956 [16] 1.9070 4.3794 13.0156 22.7975

2 2.7944 3.9319 3.3384 [16] 4.6074 [16] 6.5795 8.6974 33.7691 43.7632

3 5.0290 6.1018 5.8262 [16] 7.0197 [16] 10.8017 12.8871 54.4947 64.5960

0.5000 1 0.6713 [28] 1.8471 [28] 0.8289 2.2472 2.1674 4.7502 13.9959 24.4173

2 3.0876 [28] 4.2802 [28] 3.6583 4.9882 7.0772 9.3308 36.1835 46.8710

3 5.4356 [28] 6.5723 6.2762 7.5445 11.5837 13.8110 58.3737 69.1829

0.7285 1 1.0171 [1] 2.4813 1.2413 2.9604 2.9414 5.8351 17.0081 29.4745

2 3.9092 5.2866 4.5674 6.1151 8.6139 11.2924 43.7102 56.5767

3 6.6463 7.9984 7.6411 9.1559 14.0216 16.6878 70.4806 83.5084

0.8000 1 1.1141 [28] 2.6426 [28] 1.3558 3.1416 3.1445 6.1271 17.8412 30.8872

2 4.1216 [28] 5.5560 [28] 4.8070 6.4212 9.04055 11.8376 45.8106 59.2882

3 6.9765 [28] 8.3910 8.0169 9.6021 14.7016 17.4899 73.8615 87.5106

0.8660 1 1.1986 8.7368 1.4552 3.2967 3.3193 [16] 6.3830 [16] 18.5758 32.1361

2 4.3057 5.7918 5.0159 6.6901 9.4169 [16] 12.319 [16] 47.6669 61.6854

3 7.2669 2.7802 8.3480 9.9956 15.302 [16] 18.1987 [16] 76.8503 91.0489

0.9950 1 1.3505 3.0248 1.6334 3.57361 3.6320 6.8527 19.9309 [16] 34.4467 [16]

2 4.6396 6.2243 5.3974 7.18448 10.1114 13.2085 51.0999 [16] 66.1204 [16]

3 7.8015 9.3747 8.9587 10.7221 16.4125 19.5094 82.3790 [16] 97.5950 [16]

0.9999 1 1.3559 [20] 3.0336 [20] 1.6398 3.5836 3.6432 6.8699 19.9805 34.5314

2 4.6517 [20] 6.2401 [20] 5.4113 7.2025 10.1368 13.2411 51.2258 66.2830

3 7.8210 [20] 9.3981 [20] 8.9811 10.7487 16.4532 19.5574 82.5817 97.8350

S.M. Hasheminejad, M. Aghabeigi / Journal of Sound and Vibration 324 (2009) 332–349348
length appear to share nearly the same sloshing frequencies, regardless of their aspect ratio or baffle extension.
Also, when the free liquid surface is wide (narrow) relative to the container depth, the natural frequencies are
found to be very sensitive (nearly insensitive) with respect to the container cross sectional ellipticity. When the
width of the container is kept constant, for each given free liquid surface length, there is a critical container
geometric ratio after which the natural frequencies remain practically unaffected. This critical value decreases
with increasing the mode number and/or baffle extension. For containers of constant capacity, there is no
distinct critical aspect ratio observed, and the natural frequencies exhibit a general behavior which is
somewhat in between those of the constant depth and the constant width vessels.
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